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Poisson cluster process

A Poisson cluster process X ⊂ R is a point process generated from
an immigrant process and a family of offspring processes.

The immigrant process I is a homogeneous Poisson process with
points Xi ∈ R and intensity ν > 0.
Each immigrant Xi generates a cluster, i.e., offspring process Ci =
CXi which is a finite point process.
Given the immigrants, the centered clusters

Ci − Xi = {Y − Xi : Y ∈ Ci}, Xi ∈ I

are independent, identically distributed and independent of I.
X consists of the union of all clusters.
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Let S denote the number of points in a cluster.
Let NX(0, t ] denote the number of points of X in the interval (0, t ].
Let C0 be the cluster generated by an immigrant at 0 and let L =
supY∈C0

|Y | be the radius of C0.
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Hawkes process

Linear Hawkes process is a class of Poisson cluster processes. Its
each cluster Ci = CXi has the following branching structure:

The immigrant Xi is said to be of generation 0.
Given generations 0,1, · · · ,n in Ci , each point Y ∈ Ci of generation
n generates a Poisson process on (Y ,∞) of offspring of generation
n + 1 with intensity function h(· − Y ), where h : (0,∞)→ [0,∞) is a
non-negative Borel function.

Hawkes process can be represented by a SDE

Zt :=

∫ t

0

∫ ∞
0

1[0,φ(
∫ s−

0 h(s−u)dZεu )]
(z)π(dzds). (1.1)
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Hawkes process

As usual, we assume that

µ :=

∫ ∞
0

h(t)dt ∈ (0,1) (B1)

and ∫ ∞
0

th(t)dt <∞. (B2)

It is known that

P(S = k) =
e−kµ(kµ)k−1

k !
, k = 1,2, · · · (1.2)
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Background

Poisson cluster processes are an important class of point process
models (see Daley and Vere-Jones (2003) ).
The linear Hawkes process was first proposed by A. Hawkes to
model earthquakes and their aftershocks (Biometrika, 1971)
The nonlinear Hawkes process was first introduced by Brémaud
and Massoulié (Ann. Probab., 1996).
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Background

Long time behaviors of Hawkes processes have been studied widely,
for examples,

FCLT: see Bacry et al. (linear case, SPA,2013), Zhu (nonlinear
case, JAP (2013))
LDP: see Bordenave and Torrisi (linear case, 2007), Zhu (nonlinear
case, AIHP (2014), AOAP (2015).
Gaussian and Poisson approximations: Torrisi (AOAP (2016),
AIHP (2017)).

Long time behaviors of Poisson cluster processes: LDP: Borde-
nave and Torrisi (2007).
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Background

Small perturbation problems for the nonlinear Hawkes process

Z ε
t := ε

∫ t

0

∫ ∞
0

1[0, 1
ε
φ(
∫ s−

0 h(s−u)dZεu )]
(z)π(dzds). (1.3)

Fluctuations, large deviations and moderate deviations for the pro-
cesses Z ε

t : see Gao and Zhu (SPA, 2018+)
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Background

The mean fields of Hawkes processes:

Z N,i
t =

∫ t

0

∫ ∞
0

I{
z≤φ

(
N−1

∑N
j=1
∫ s−

0 h(s−u)dZ N,j
u

)}πi(dz ds).

The mean field is defined by

LN(t ,dx) =
1
N

N∑
i=1

δZ N,i
t

(dx), 0 ≤ t ≤ T .

LLN and Fluctuations: see Delattre, Fournier, and Hoffmann
(AOAP, 2016), Chevallier (SPA, 2017).
LDP: Gao and Zhu (2018).
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Our motivation: Consider functional central limit theorem and func-
tional moderate deviation principle for Poisson cluster processes.

Limit in (D[0,1], ρs) for NX(0,αt]−E(NX(0,αt])√
α

, t ∈ [0,1].

LDP in (D[0,1], ρs) for NX(0,αt]−E(NX(0,αt])
b(α) , t ∈ [0,1], where {b(α), α >

0} is a positive function satisfying:

lim
α→∞

b(α)
α

= 0, lim
α→∞

b(α)√
α

= +∞. (SC)

F.Q. Gao (Wuhan University) FCLT and FMDP or Poisson cluster 2018 11 / 37



Our motivation: Consider functional central limit theorem and func-
tional moderate deviation principle for Poisson cluster processes.

Limit in (D[0,1], ρs) for NX(0,αt]−E(NX(0,αt])√
α

, t ∈ [0,1].

LDP in (D[0,1], ρs) for NX(0,αt]−E(NX(0,αt])
b(α) , t ∈ [0,1], where {b(α), α >

0} is a positive function satisfying:

lim
α→∞

b(α)
α

= 0, lim
α→∞

b(α)√
α

= +∞. (SC)

F.Q. Gao (Wuhan University) FCLT and FMDP or Poisson cluster 2018 11 / 37



Our motivation: Consider functional central limit theorem and func-
tional moderate deviation principle for Poisson cluster processes.

Limit in (D[0,1], ρs) for NX(0,αt]−E(NX(0,αt])√
α

, t ∈ [0,1].

LDP in (D[0,1], ρs) for NX(0,αt]−E(NX(0,αt])
b(α) , t ∈ [0,1], where {b(α), α >

0} is a positive function satisfying:

lim
α→∞

b(α)
α

= 0, lim
α→∞

b(α)√
α

= +∞. (SC)

F.Q. Gao (Wuhan University) FCLT and FMDP or Poisson cluster 2018 11 / 37



FCLT

Theorem 2.1

Assume that (A1) holds. Then as α→∞,

NX(0, αt ]− E(NX(0, αt ])√
α

d→ σB(t)

in (D[0,1], ρs), where {B(t), t ≥ 0} is the standard Brownian motion,
and d→ denotes convergence in distribution.
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FMDP

Theorem 2.2

Assume that (A2) holds. Define J : D[0,1]→ [0,∞] as follows

J(f ) =


1

2σ2

∫ 1

0
|ḟ (t)|2dt , if f ∈ AC0[0,1];

+∞, otherwise.

(2.1)

Then
{

NX(0,αt]−E(NX(0,αt])
b(α) , t ∈ [0,1]

}
satisfies the large deviation princi-

ple (LDP) on (D[0,1], ‖ · ‖) with speed b2(α)
α and good rate function J(f ).
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That is,
(1). For any l ≤ 0, {f ; J(f ) ≤ l} is compact in (D[0,1], ‖ · ‖);
(2). For any closed F in (D[0,1], ‖ · ‖),

lim sup
α→∞

α

b2(α)
log P

(
NX(0, α·]− E(NX(0, α·])

b(α)
∈ F

)
≤ − inf

f∈F
J(f ),

and for any open G in (D[0,1], ‖ · ‖),

lim inf
α→∞

α

b2(α)
log P

(
NX(0, α·]− E(NX(0, α·])

b(α)
∈ G

)
≥ − inf

f∈G
J(f ).
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FCLT and FMDP for Hawkes processes

Corollary 2.1

Let X be a Hawkes process. Assume that (B1) and (B2) hold. Then
(1).

{
NX(0,αt]−E(NX(0,αt])√

α
, t ∈ [0,1]

}
converges in distribution to√

ν
(1−µ)3 B(t) in (D[0,1], ρs).

(2).
{

NX(0,αt]−E(NX(0,αt])
b(α) , t ∈ [0,1]

}
satisfies the large deviation princi-

ple (LDP) on (D[0,1], ‖·‖) with speed b2(α)
α and good rate function JH(f )

defined by

JH(f ) =


(1− µ)3

2ν

∫ 1

0
|ḟ (t)|2dt , if f ∈ AC0[0,1];

+∞, otherwise.

(2.2)
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A maximal inequality for Poisson cluster processes

Define
C(t) =

∑
Xk∈I|(0,t]

NCk (0, t ]. (2.3)

We present a maximal inequality for Poisson cluster processes. It plays
a very important role in this paper.
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A maximal inequality for Poisson cluster processes

Lemma 2.1

Let 0 ≤ s < t , and s = t0 < t1 < · · · < tn = t . Then for any r > 0,

P
(

max
1≤l≤n

|C(tl)− C(s)− E(C(tl)− C(s))| > 3r
)

≤2P

 max
0≤l≤n−1

∣∣∣∣∣∣
∑

Xk∈I|(0,tl ]

NCk (tl , tn]− E

 ∑
Xk∈I|(0,tl ]

NCk (tl , tn]

∣∣∣∣∣∣ > r/2


+ 2 max

0≤l≤n−1
P

∣∣∣∣∣∣
∑

Xk∈I|(tl ,tn ]

NCk (0, tn]− E

 ∑
Xk∈I|(tl ,tn ]

NCk (0, tn]

∣∣∣∣∣∣ > r/2

 .

(2.4)
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Proof of FCLT

In this section, we give a proof of the following FCLT.

Theorem 3.1

Assume that (A1) holds. Then as α→∞,

NX(0, αt ]− E(NX(0, αt ])√
α

d→ σB(t)

in (D[0,1], ρs), where {B(t), t ≥ 0} is the standard Brownian motion,
and d→ denotes convergence in distribution.
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Proof of FCLT

Let us write

NX(0, αt ]− E(NX(0, αt ])√
α

=
C(αt)− E(C(αt))√

α

+

∑
Xk∈I|(−∞,0]

NCk (0, αt ]− E(
∑

Xk∈I|(−∞,0]
NCk (0, αt ])

√
α

+

∑
Xk∈I|(αt,∞]

NCk (0, αt ]− E(
∑

Xk∈I|(αt,∞]
NCk (0, αt ]

√
α

.

We will prove that the second term and the third term are negligible and

C(αt)− E(C(αt))√
α

d→ σB(t).
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Proof of FCLT

That is,

(a). 1√
α

supt∈[0,1]

∣∣∣∣∑Xk∈I|(−∞,0]
NCk (0, αt ]−E

(∑
Xk∈I|(−∞,0]

NCk (0, αt ]
)∣∣∣∣→

0 in probability

(b). 1√
α

supt∈[0,1]

∣∣∣∣∑Xk∈I|(αt,∞)
NCk (0, αt ]−E

(∑
Xk∈I|(αt,∞)

NCk (0, αt ]
)∣∣∣∣→

0 in probability

(c). C(αt)−E(C(αt))√
α

d→ σB(t)
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Next let us show the following result.

Proposition 3.1

Assume that (A1) holds. Then

C(αt)− E(C(αt))√
α

d→ σB(t) (3.1)

in (D[0,1], ρs).
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It is sufficient to show the following two lemmas.

Lemma 3.1

Assume that (A1) holds. Then for each n ≥ 1 and 0 ≤ t1 < · · · < tn ≤ 1,(
C(αt1)− E(C(αt1))√

α
, · · · , C(αtn)− E(C(αtn))√

α

)
d→ σ(B(t1), · · · ,B(tn)).

Lemma 3.2

Assume that (A1) satisfies. Then for any δ > 0,

lim
η→0

lim sup
α→∞

P
(

sup
|t−s|<η

∣∣∣∣C(αt)− E(C(αt))

− (C(αs)− E(C(αs)))
∣∣∣∣ > 3

√
αδ

)
= 0.

(3.2)
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Proof of Lemma 3.1

By the definition of Poisson cluster process, we have that

E

(
e

√
−1√
α

∑n
i=1 θi

(∑
Xk∈I|(0,αti ]

NCk
(0,αti ]−E

(∑
Xk∈I|(0,αti ]

NCk
(0,αti ]

)))

=exp
{
ν

n∑
j=1

∫ α(tj−tj−1)

0

{
E
(

e
√
−1√
α

∑n
i=j θi NC0

(−αtj−1−s,α(ti−tj−1)−s] − 1
)

−
√
−1√
α

E
( n∑

i=j

θiNC0(−αtj−1 − s, α(ti − tj−1)− s]
)}

ds
}
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Note that NC0(−αtj−1−s, α(ti−tj−1)−s] ≤ NC0(R) = S and NC0(−αtj−1−
s, α(ti − tj−1)− s] ↑ S as α ↑. Thus

lim
α→∞

E

(
e

√
−1√
α

∑n
i=1 θi

(∑
Xk∈I|(0,αti ]

NCk
(0,αti ]−E

(∑
Xk∈I|(0,αti ]

NCk
(0,αti ]

)))

=exp

−1
2
νE(S2)

n∑
j=1

 n∑
i=j

θi

2

(tj − tj−1)


=E

(
e
√
−1
∑n

i=1 θiσB(ti )
)
.
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Proof of Lemma 3.2

For η > 0 given, set

As(δ) =

{
sup

s≤t≤s+η

∣∣∣∣C(αt)− E(C(αt))− (C(αs)− E(C(αs)))
∣∣∣∣ > √αδ}.

Then

P

(
sup
|t−s|<η

∣∣∣∣C(αt)− E(C(αt))− (C(αs)− E(C(αs)))
∣∣∣∣ > 3

√
αδ

)

≤P
(
∪i≤η−1Aiη(δ)

)
≤
(

1 +
1
η

)
sup

s∈(0,1)
P (As(δ))

Thus, if for any δ > 0,

lim
η→0

lim sup
α→∞

1
η

sup
s∈(0,1)

P (As(δ)) = 0, (3.3)

then (3.2) holds. Thus, we only need to prove (3.3).
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For any η ∈ (0,1), s ∈ (0,1), set tl = sα + lη for l = 0,1, · · · , [α] + 1.
Then for any δ > 0,

P

(
sup

s≤t≤s+η

∣∣∣∣C(αt)− E(C(αt))− (C(αs)− E(C(αs)))
∣∣∣∣ > √αδ

)

≤P
(

max
1≤l≤[α]+1

∣∣∣∣C(tl)− E(C(tl))− (C(αs)− E(C(αs)))
∣∣∣∣ > √αδ/2)

+ P
(

max
0≤l≤[α]

∣∣∣∣E(C(tl)− C(tl+1))

∣∣∣∣ > √αδ/2) .
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By the maximal inequality for poisson cluster processes ( lemma 2.1),

P
(

max
1≤l≤[α]+1

∣∣∣∣C(tl)− E(C(tl))− (C(αs)− E(C(αs)))
∣∣∣∣ > √αδ/2)

≤2P

 max
0≤l≤[α]

∣∣∣∣∣∣
∑

Xk∈I|(0,tl ]

NCk (tl , t[α]+1]− E

 ∑
Xk∈I|(0,tl ]

NCk (tl , t[α]+1]

∣∣∣∣∣∣ >
√
αδ

12


+ 2 max

0≤l≤[α]
P
(∣∣∣∣ ∑

Xk∈I|(tl ,t[α]+1]

NCk (0, t[α]+1]

− E

 ∑
Xk∈I|(tl ,t[α]+1]

NCk (0, t[α]+1]

∣∣∣∣ > √αδ12

)
.
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Thus, we only need to show that

sup
s∈(0,1)

P
(

max
0≤l≤[α]

E(C(tl+1)− C(tl)) >
√
αδ/2

)
→ 0, (3.4)

sup
s∈(0,1)

P
(

max
0≤l≤[α]

∣∣∣∣ ∑
Xk∈I|(0,tl ]

NCk (tl , t[α]+1]

− E

 ∑
Xk∈I|(0,tl ]

NCk (tl , t[α]+1]

∣∣∣∣ > √αδ12

)
→ 0.

(3.5)

and

1
η

sup
s∈(0,1)

max
0≤l≤[α]

P
(∣∣∣∣ ∑

Xk∈I|(tl ,t[α]+1]

NCk (0, t[α]+1]

− E
( ∑

Xk∈I|(tl ,t[α]+1]

NCk (0, t[α]+1]

)∣∣∣∣ > √αδ/12
)
→ 0.

(3.6)
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Notice that
∑

Xk∈I|(−∞,tl ]
NCk (tl ,∞), l = 0,1, · · · , [α] + 1 are identically

distributed with
∑

Xk∈I|(−∞,0]
NCk (0,∞), and

E
( ∑

Xk∈I|(−∞,tl ]

NCk (tl ,∞)

)
≤ νE(LS),

E

( ∑
Xk∈I|(−∞,tl ]

NCk (tl ,∞)

)2
 ≤ (νE(LS))2 + νE(LS2).

F.Q. Gao (Wuhan University) FCLT and FMDP or Poisson cluster 2018 29 / 37



Therefore, for α large enough,

P

 max
0≤l≤[α]

∣∣∣∣∣∣
∑

Xk∈I|(0,tl ]

NCk (tl , t[α]+1]− E

 ∑
Xk∈I|(0,tl ]

NCk (tl , t[α]+1]

∣∣∣∣∣∣ >
√
αδ

12


≤(α+ 1) max

0≤l≤[α]
P

 ∑
Xk∈I|(0,tl ]

NCk (tl , t[α]+1] >

√
αδ

20


≤(α+ 1)P

 ∑
Xk∈I|(−∞,0]

NCk (0,∞) >
√
αδ/20


Now, by Chebyshev’s inequality, we can get (3.4),(3.5) and (3.6).
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Proof of FMDP

In this section, we give a proof of the following moderate deviation prin-
ciple.

Theorem 4.1

Assume that (A2) holds. Define J : D[0,1]→ [0,∞] as follows

J(f ) =


1

2σ2

∫ 1

0
|ḟ (t)|2dt , if f ∈ AC0[0,1];

+∞, otherwise.

(4.1)

Then
{

NX(0,αt]−E(NX(0,αt])
b(α) , t ∈ [0,1]

}
satisfies the large deviation princi-

ple (LDP) on (D[0,1], ‖ · ‖) with speed b2(α)
α and good rate function J(f ).
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Proof of FMDP

It is obvious that

NX(0, αt ]− E(NX(0, αt ])
b(α)

=
C(αt)− E(C(αt))

b(α)

+

∑
Xk∈I|(−∞,0]

NCk (0, αt ]− E(
∑

Xk∈I|(−∞,0]
NCk (0, αt ])

b(α)

+

∑
Xk∈I|(αt,∞]

NCk (0, αt ]− E(
∑

Xk∈I|(αt,∞]
NCk (0, αt ]

b(α)
.

We will show that

(a). NX(0,αt]−E(NX(0,αt])
b(α) and C(αt)−E(C(αt))

b(α) are exponentially equivalent in
moderate deviation.

(b). C(αt)−E(C(αt))
b(α) satisfies MDP.
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Exponential equivalence:
For any δ > 0,

lim
α→∞

α

b2(α)
log P

(
sup

t∈[0,1]

∣∣∣∣ ∑
Xk∈I|(−∞,0]

NCk (0, αt ]

− E
( ∑

Xk∈I|(−∞,0]

NCk (0, αt ]
)∣∣∣∣ > b(α)δ

)
= −∞,

(4.2)
and

lim
α→∞

α

b2(α)
log P

(
sup

t∈[0,1]

∣∣∣∣ ∑
Xk∈I|(αt,∞)

NCk (0, αt ]

− E
( ∑

Xk∈I|(αt,∞)

NCk (0, αt ]
)∣∣∣∣ > b(α)δ

)
= −∞.

(4.3)
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Proposition 4.1

Assume that (A2) holds. Then
{

C(αt)−E(C(αt))
b(α) , t ∈ [0,1]

}
satisfies the

large deviation principle (LDP) on (D[0,1], ‖ · ‖) with speed b2(α)
α and

good rate function J(f ).
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It is sufficient to show the following two Lemmas.

Lemma 4.1

Assume that (A2) holds. Then for each n ≥ 1 and 0 ≤ t1 < · · · < tn ≤ 1,(
C(αt1)− E(C(αt1))

b(α)
, · · · , C(αtn)− E(C(αtn))

b(α)

)
satisfies the LDP in Rn with speed b2(α)

α and good rate function
Jt1,··· ,tn(x1, · · · , xn).
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Lemma 4.2

Assume that (A2) satisfies. Then for any δ > 0, s ∈ (0,1),

lim
η→0

lim sup
α→∞

α

b2(α)
log P

(
sup

s≤t≤s+η

∣∣∣∣C(αt)− E(C(αt))

− (C(αs)− E(C(αs)))
∣∣∣∣ > b(α)δ

)
= −∞.

(4.4)
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Thank You !
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